

可燃气体传感器

(型号: MH-741A)

使用说明书

版本号: 3.6

实施日期: 2022.08.08

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd 声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本

说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音

等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成

的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不

依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何

损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何

产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓

励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

MH-741A 可燃气体传感器

产品描述

MH-741A可燃气体传感器是一款通用型智能红外气体 传感器(以下简称传感器),运用非色散红外(NDIR)原 理对空气中存在的碳氢类可燃气体进行探测,具有很好的 选择性,无氧气依赖性,性能稳定、寿命长;内置温度补 偿。该传感器是通过将成熟的红外吸收气体检测技术与微 型机械加工、精良电路设计紧密结合而制作出的小巧型高 性能传感器。

传感器特点

- ▶ 高灵敏度、高分辨率、低功耗、响应时间快
- ▶ 提供UART、 模拟电压等多种输出方式
- ▶ 温度补偿,卓越的线性输出
- ▶ 优异的稳定性、使用寿命长
- ▶ 抗水汽干扰、不中毒
- ➤ 在有 II A、II B、II C级T1-T6级可燃性气体、蒸气与空气混合形成的爆炸性环境的1区或2区场所中配合具有隔爆标志的探测器检测环境中的可燃气体浓度

主要应用

可广泛应用于工业现场仪器仪表,工业过程及安全防护监控监控。

技术指标

表 1

产品型号	MH-741A				
检测气体	可燃气体(详见表2)				
工作电压	4.5∼5.5 V DC				
平均电流	< 100 mA				
接口电平	3.3 V				
测量范围	0~100% Vol 范围内可选(详见表 2)				
松山岸县	IIC				
输出信号	0.4~2 V				
预热时间	3 min				
响应时间	$T_{90} < 30 \ s$				
工作温度	-40∼70 ℃				
工作湿度	0~95% RH (无凝结)				
外形尺寸	Ф44×61 mm				
重 量	350 g				
寿 命	> 5年				

防爆标志	Ex d II C T6 Gb
防护等级	IP65

常用量程和精度

表2

气体名称	分子式	量程	分辨率	备注
甲烷	CH ₄	0∼5% Vol	0.01% Vol	温度补偿
甲烷	CH ₄	0∼10% Vol	0.01% Vol	温度补偿
甲烷	CH ₄	0∼100% Vol	0.1% Vol	温度补偿
丙烷	C_3H_8	0∼2.1% Vol	0.01% Vol	温度补偿
丙烷	C_3H_8	0∼100% Vol	0.1% Vol	温度补偿
氯甲烷	CH ₃ CL	0∼8.1% Vol	0.01% Vol	温度补偿
氯甲烷	CH₃CL	0∼100% Vol	0.1% Vol	温度补偿
乙炔	C_2H_2	0∼2.1% Vol	0.02% Vol	温度补偿
丙烯	C_3H_6	0~2.0% Vol	0.02% Vol	温度补偿
乙烯	C_2H_4	0∼2.7% Vol	0.027% Vol	温度补偿
乙烷	CH ₃ CH ₃	0∼3.0% Vol	0.03% Vol	温度补偿
异丁烷	C_4H_{10}	0∼1.8% Vol	0.018% Vol	温度补偿
汽油	C ₃ -C ₁₂	0∼1.1% Vol	0.01% Vol	无温度补偿
环戊烷	C_5H_{10}	0∼1.4% Vol	0.01% Vol	无温度补偿
环己烷	C_6H_{12}	0∼1.3% Vol	0.01% Vol	无温度补偿
甲醇	CH₃OH	0∼6.7% Vol	0.06% Vol	无温度补偿
二氯甲烷	CH ₂ CL ₂	0∼15% Vol	0.15% Vol	无温度补偿
苯	C_6H_6	0∼1.2% Vol	0.012% Vol	无温度补偿
甲苯	C ₇ H ₈	0∼1.2% Vol	0.012% Vol	无温度补偿
乙醇	C ₂ H ₅ OH	0∼3.3% Vol	0.033% Vol	无温度补偿
环氧乙烷	C_2H_4O	0∼3.0% Vol	0.03% Vol	无温度补偿
环氧氯丙烷	C₃H₅CLO	0∼3.8% Vol	0.038% Vol	无温度补偿
氯丙烯	C₃H₅CL	0∼2.9% Vol	0.029% Vol	无温度补偿
戊烷	C_5H_{12}	0∼1.4% Vol	0.014% Vol	无温度补偿
乙酸乙脂	$C_4H_8O_2$	0∼2.0% Vol	0.02% Vol	无温度补偿

说明:上表中的量程为常用量程范围,用户可根据自己的需求定制。常温下为液态的物质,不能做温度补偿,选择时请注意。

产品尺寸图

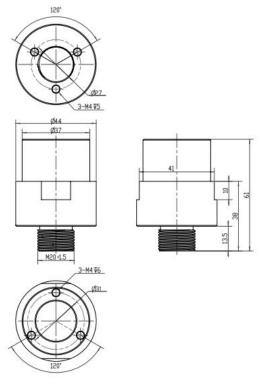


图1 传感器结构图

管脚定义

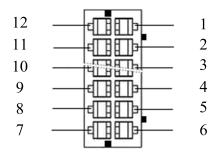


图 2 管脚定义图

MH-741A 引脚定义 表 3

管脚名称	管脚说明				
Pin 1	Vin 电压输入				
Pin 4	GND				
Pin 5	Vout (0.4~2 V)				
Pin 2	IIC (SCL) 时钟				
Pin 3	IIC (SDA) 数据				
Pin 6, Pin 7, Pin 8	工厂预留,不能有任何电气连				
Pin 10, Pin 11,	接				
Pin 12	汝				

以诚为本、信守承诺 创造完美、服务社会

应用电路

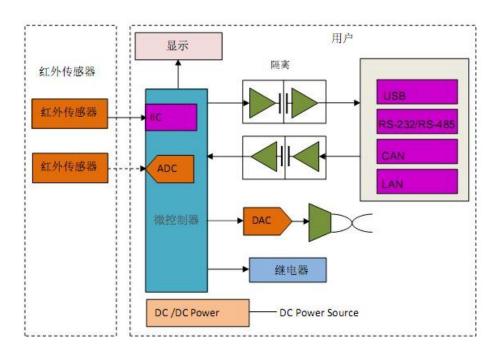
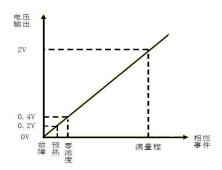



图3应用电路

模拟电压输出

Vout 输出电压范围 (0.4~2V), 对应气体浓度 (0~满量程)

将传感器Vin端接5V,GND端接电源地,Vout端接ADC的输入端。传感器经过预热时间后从Vout端输出表征气体浓度的电压值,0.4~2.0V 代表气体浓度值0~满量程。当自检发现故障时,传感器输出电压为0V。

IIC 输出

硬件连接

将传感器的 Vin-GND-CLK-SDA 分别接至用户的 5V-GND-CLK-SDA。探测器可以直接通过传感器的 IIC 接口读出气体浓度值(注意: 用户的 SCL 和 SDA 信号线必须使用不大于 10K 的上拉电阻保证 IIC 通讯接口正常工作),不需要计算。

通讯协议

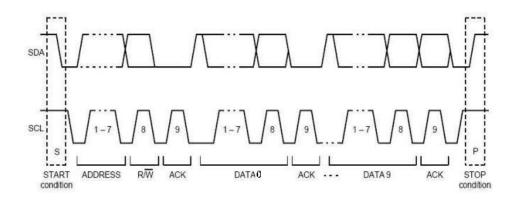
MH-711A是通过IIC总线进行通讯的,模块工作于IIC的从机模式,可以与外部的MCU相联,模块器件地址是: 0x55,模块的写操作地址是: 0xAA,读操作地址是: 0xAB。IIC通讯时每一帧数数据包含10个字节

以诚为本、信守承诺 创造完美、服务社会

数据,数据的内容根据主机的命令不同而不同,数据的最后一个字节为校验值。推荐SCL的时钟频率小于10K。

器件地址

地址格式: 高7位为传感器的模块地址(0x55),最低位为读/写操作位,0表示读,1表示写。


表4

A7	A6	A5	A4	А3	A2	A1	W/R
1	0	1	0	1	0	1	0/1

IIC 通讯的写地址: OxAA, 读地址: OxAB

总线描述

IIC 接口协议是一个特殊总线信号协议。由 Start (S) (开始信号)、Stop (P) (结束信号)、二进制数据等三部分组成,如下图。开始时,SCL 高,SDA 下降沿。之后,发送从器件地址。在 7 位的地址位之后,是控制读写位,选择读写操作,如上图。当从器件识别到与其对应的地址信息后,将向主机发送一个应答信号,在第 9 个时钟周期拉低 SDA。在停止时,SCL 保持高电平,SDA 上升沿。

命令

IIC 通讯命令每一帧数据包含 10 个字节数据,数据的内容根据主机的命令不同而不同,数据的最后一个字节为校验码。

协议命令接口列表及含义									
0x96	读气体浓度值								
0xA0	校准传感器 零点 (ZERO)								
OxAA	校准传感器 跨度点 (SPAN)								

0x96-读取气体浓度值												
发送命令												
0	1	2	3	4	5	6	7	8	9			
命令									校验码			
0x96	0x00	0x6A										

以诚为本、信守承诺 创造完美、服务社会

返回值											
0	1	2	3	4	5	6	7	8	9		
模块状态					浓度值高位	浓度值低 位	量程高位	量程低位	校验码		
气体浓度值	气体浓度值 = 浓度值高位 × 256 + 浓度值低位										

0xA0-零点	0xA0-零点校准命令											
发送命令												
0	1	2	3	4	5	6	7	8	9			
命令									校验码			
0xa0	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x60			
无返回值												

0xAA-SPA	0xAA-SPAN 点校准命令												
发送命令													
0	1	2	3	4	5	6	7	8	9				
命令	SPAN 值								校验码				
0xaa	高字节	低字节	0x00	0x00	0x00	0x00	0x00	0x00	0xbb				
无返回值													

校验计算

校验和 = (取反(Byte0+Byte1+Byte2+Byte3+Byte4+Byte5+Byte6+Byte6+Byte7+Byte8))+1

例

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
命令	_	_	_	_	_	_	_	_	校验值
0x96	0x00	校验和							

计算如下:

- 1、从 Byte0 加至 Byte8: 0x96 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0x96
- 2、取反: 0xff 0x96 = 0x69
- 3、对取反后加 **1:** 0x69 + 0x01 = 0x6A

C语言计算校验和例程

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 9; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

以诚为本、信守承诺 创造完美、服务社会

注意事项

- ▶ 传感器应定期标定,建议标定周期6个月。
- ▶ 不要在粉尘密度大的环境长期使用传感器。
- ▶ 请在传感器供电范围内使用传感器。

警告:

- ▶ 传感器只能与具有隔燥标志的探测器配套使用,严禁单独使用。
- ▶ 在危险场所禁止拆卸、更换传感器。传感器拆卸、更换必须在安全环境下进行。
- 禁止在传感器上打孔等影响隔爆性能的方式进行安装固定。
- ▶ 传感器工作电压为 4.5~5.5V DC,推荐电压 5V。供电电压超过 5.5V 将导致传感器永久性损坏,电压低于 4.5V DC 传感器将不能正常工作。
- 传感器与具有隔爆标志的探测器只能通过隔爆螺纹连接,并且必须使用符合防爆要求的密封圈密封。隔爆螺纹之间的连接必须采取防松措施。

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号: winsensor

E-mail:sales@winsensor.com Http://www.winsensor.com

以诚为本、信守承诺